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Abstract

Autonomous robots exploring extraterrestrial surfaces
require robust perception systems capable of semantic seg-
mentation and depth estimation with limited computational
overhead. We present a unified multi-task architecture using
a SAM-based backbone with specialized prediction heads
for jointly performing semantic segmentation and monocu-
lar depth perception on lunar terrain. This is done through
using a multi-task objective function to balance segmenta-
tion accuracy with depth precision. In particular, we in-
corporate knowledge distillation from a pre-trained DPT
model to enhance depth prediction capabilities. Our model
is trained and evaluated on LuSNAR, a synthetic lunar per-
ception dataset consisting of RGB images, depth maps, and
segmentation labels. We achieve competitive segmentation
performance with an mIOU of 0.7766, beating out CNN-
based methods such as UNet++. We also achieve strong
depth perception performance with an absolute relative er-
ror of 0.074 and an RMSE of 0.024 – outperforming Depth
Anything v2 (current SOTA on general monocular depth
estimation) on this particular task. We demonstrate that
domain-specific, multi-task architectures effectively address
the unique challenges of lunar perception tasks. Not only
has this model learned to handle minimal color variation,
extreme lighting conditions, and complex geological fea-
tures, but it has also demonstrated the required computa-
tional efficiency necessary to support autonomous extrater-
restrial exploration missions.

1. Introduction

Autonomous robots exploring and operating on the sur-
face of extraterrestrial bodies such as the Moon and Mars
require robust, power-efficient perception systems capable
of safely navigating treacherous terrain with minimal hu-
man intervention. A strong level of autonomy for these
scenarios is critical due to the time delay it takes to tele-

operate spacecraft in these regions: for instance, one-way
communication to a spacecraft on Mars could take as long
as 21 minutes per transmission, which makes real-time re-
mote control of these spacecraft extremely challenging and
infeasible for complex mission scenarios with tight time-
based constraints [1]. However, developing algorithms and
models for autonomous rover-type spacecraft designed to
operate on extraterrestrial surfaces comes with a unique set
of challenges: modern perception-based foundation mod-
els are often trained on datasets containing a diverse set of
objects; these models tend to perform well at disambiguat-
ing between different types and instances of objects. On
the Lunar and Martian surfaces, there is a relatively small
number of object classes, such as the sky, regolith (soil),
rocks, craters, etc. The main challenges faced by percep-
tion algorithms in this domain relate to minimal color vari-
ation between objects, extreme lighting conditions (either
high levels of glare from sunlight or large shadows that
occlude objects), as well as complex geological features
(rocks and craters generally do not have a uniform shape).
This presents a complex scenario for any autonomous navi-
gation stack.

While there are many types of tasks relevant to au-
tonomous navigation on extraterrestrial surfaces, we con-
sider two of the most paramount and difficult tasks in this
domain for perception-based models: semantic segmenta-
tion and depth perception. In the semantic segmentation
task, we take as input an RGB image tensor and assign
a class label to every pixel in the image. Each of these
class labels corresponds to an object category, and these la-
beled pixels are subsequently used to generate a segmen-
tation map, which is a tensor with the same dimensions as
the input RGB image but each pixel is colored according
to its class label. This makes it easy to visualize the differ-
ent types of objects that have been detected in the image.
Semantic Segmentation can be performed using either Con-
volutional Neural Networks or Transformer-based models;
an RGB image is used as input and a segmentation map of
the same spatial dimensions is generated. In the depth per-
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ception task, we take as input an RGB image tensor and
compute a scalar value for every pixel in the image that in-
dicates distance to the location where the image was taken.
These scalar values are used to generate a depth map, which
is a tensor with the same dimensions as the input RGB im-
age but each pixel corresponds to the scalar depth/distance
value at that location. Color maps can be used to visualize
depth maps, with different colors in a gradient indicating the
distance from the object to the camera. Like Semantic Seg-
mentation, Depth Perception can be performed using either
Convolutional Neural Networks or Transformer-based mod-
els (although we only consider the latter in this research); an
RGB image is used as input and a depth map of the same
spatial dimensions is generated.

This work was recently inspired by our participation in
the 2025 edition of NASA’s Lunar Autonomy Challenge
(LAC) as part of Stanford’s Navigation and Autonomous
Vehicles Laboratory. The LAC involves using a digital twin
of NASA’s IPEx rover to explore and map the lunar surface
[3]. Our solution for the competition involved off-the-shelf
models for both of these tasks – namely, Depth Anything
v2 for Depth Perception and LangSAM for Semantic Seg-
mentation. We observed significant inefficiencies in tradi-
tional perception stacks such as the one used in the LAC;
running separate models for both tasks involved lengthy
query/inference times and higher compute requirements,
thus reducing our observed mapping efficiency. Given the
power and processing constraints of space-rated hardware,
coupled with the aforementioned communication delays,
we aim to explore in this research the development of a
unified model architecture and evaluate how it performs
on each of the aforementioned tasks with respect to dedi-
cated semantic segmentation/depth perception models. As
such, this work will address an existing gap in Computer
Vision tasks for space-related applications while advancing
resource-constrained perception systems for autonomous
mobile robots.

2. Related Work
The jointly-trained unified perception model architecture

in this work is primarily inspired by [14], which describes
how depth perception capabilities can be integrated within
SAM-type models. The authors accomplish this by incor-
porating what they term as the Prompt Deeper (which in-
tegrates RGB and depth features through knowledge dis-
tillation and bias correction and subsequently uses depth
data to refine erroneous RGB features and generate depth-
aware prompts for SAM) and Finer (which enhances seg-
mentation accuracy by recovering missed camouflaged re-
gions via mask reversion, self-filtering, and depth-guided
self-attention operations) modules. We find their knowl-
edge distillation approach relevant and incorporate a similar
though simpler technique in our work.

[10] presents a multi-view stereo technique that allows
SAM, a powerful pre-trained general-purpose semantic seg-
mentation model capable of adapting to a variety of image
features (that is SOTA on a variety of segmentation tasks),
can be modified to outperform competing simple-task mod-
els by leverage multiple camera views [4], [9]. Although
our approach focuses primarily on single-image perception,
we incorporates part of the SAM modification strategy and
prediction head construction into our single-view context; a
similar heuristic is also discussed in [14] as well.

We use both CNN and Transformer-based baselines for
the semantic segmentation task. This is because CNN-
based models can run better within a resource constrained
environment at the expense of accuracy and model capacity.
[6] proves that CNN models can be jointly trained on seg-
mentation and depth tasks using asymmetric annotations,
and shows how multi-task loss functions (similar to the one
implemented in this work) can be designed with compet-
ing objectives in mind. We incorporate these findings on
loss balancing strategies with a more sophisticated back-
bone network from [4]. We choose UNet++ as our CNN
baseline, which performs robustly against a variety of CNN
segmentation benchmarks [15]. Furthermore, since we uti-
lize a SAM-based backbone in our unified model, we evalu-
ate performance on the semantic segmentation task against
two additional Transformer-based models designed specif-
ically with this task in mind. MaskFormer combines se-
mantic, instance, and panoptic segmentation by generating
mask predictions from global category queries and is rela-
tively lightweight to run [2]. SegFormer uses an encoder-
decoder architecture with a hierarchical transformer en-
coder that is coupled to a lightweight decoder [11]. As such,
SegFormer is an excellent model for efficiently conducting
the pixel-level semantic segmentation task, whereas SAM-
family models were designed with open-world generaliza-
tion in mind. For resource-constrained applications that re-
quires precise class-specific segmentation (without neces-
sarily using a highly general model such as SAM), Seg-
Former is a good choice and performs at a near-SOTA level
on these tasks. We use fine-tuned versions of SegFormer,
MaskFormer, and UNet++ as our baselines on the semantic
segmentation task.

For the depth perception task, we consider the Depth
Anything series of models. The original Depth Anything
model, based on the Transformer architecture, used a mix of
real-labeled and pseudo-labeled images combined with aux-
iliary supervision for robust performance on the monocular
depth estimation task [12]. Depth Anything v2 improves the
model by shifting to a synthetic dataset for supervised learn-
ing and introduces a teacher-student knowledge distillation
framework during training, along with a DINOv2-based
backbone that provides stronger semantic features and fine-
grained image features [13]. This model is SOTA on depth



perception accuracy, efficiency, and generalization; we use
a fine-tuned version of this model as our depth perception
task baseline. A competitor to the Depth Anything series
of models is the Intel DPT (Dense Prediction Transformer)
architecture, which uses Vision Transformers as a feature
extractor along with a decoder that processes multi-scale
image features into a depth map [8]. DPT-type models have
been able to achieve SOTA in some dense prediction bench-
marks. We use DPT as the teacher for the depth prediction
head due to it having less computational cost on average
compared to Depth Anything v2; in particular, our exper-
iments will determine if our SAM backbone in the jointly
trained unified model can match Depth Anything v2’s per-
formance on the depth perception task without using a DI-
NOv2 backbone to extract semantic image features.

3. Dataset
We incorporate the LuSNAR dataset in our research.

LuSNAR is a comprehensive dataset designed for a suite
of lunar surface perception tasks. It provides high-fidelity
simulated lunar scenes, with each scene consisting of RGB
images in PNG format, depth maps in PFM format, seman-
tic segmentation maps with labeled pixels in PNG format,
and LiDAR point clouds [5]. Constructed as an entirely
synthetic dataset using Unreal Engine, LuSNAR provides 9
high-fidelity surface scenes with varying topographic relief
and object density. This enables simulation of conditions
ranging from simple flat terrain to treacherous mountainous
terrain, along with a varying distribution of rocks and im-
pact craters throughout. Throughout these scenes, LuSNAR
is comprised of 13,006 sequences, with each sequence con-
taining between 1,000 to 2,000 individual frames. A frame
within a sequence consists of an RGB image in PNG format
(42 GB total in the dataset) with a 1024 × 1024 resolution,
paired with the following:

• Semantic Segmentation Map (356 MB of la-
bels): 1024 × 1024 map with each pixel colored
based on its class label. Valid class labels are
{lunar regolith, rocks, impact craters, mountains, sky}.

• Depth Map (50 GB total): 1024 × 1024 map in 16-
bit PFM format with each pixel position containing a
scalar value that represents the distance to the camera.

• 3D Point Clouds: Approximately 10,000 points per
frame with semantic labels for each point indicating
if that point is regolith or part of a rock/crater.

• IMU data and ground truth poses.

We make use of the RGB images, semantic segmentation
maps, and depth maps from each sequence. The 3D Point
Clouds and IMU poses are relevant for SLAM applications,

Figure 1. A dataset example from LuSNAR. (Left) RGB image
of the lunar surface. (Center) Corresponding depth map. (Right)
Corresponding segmentation map with labels applied.

which we do not consider in this work. We follow a sug-
gested 80-20 split for training and validation data respec-
tively which translates to just over 10,000 sequences for the
training set and just over 2,000 sequences for the validation
set. Within this dataset, we index primarily on geometric
properties as the main feature since there is little color vari-
ation between objects (except for the sky). The dimensions
of the rocks and craters are accurate based on knowledge
about the lunar surface; furthermore, we also focus on the
relative scale between objects. For instance, a mountain is
going to appear far larger and more distant compared to a
rock, despite both having similar colors and shapes in cer-
tain cases.

To preprocess and augment the dataset, we first created
a pipeline to normalize the RGB images with an ImageNet
mean/standard deviation. We also apply normalization over
the depth maps as well before feeding them into any model.
To augment the data, we follow standard practice by intro-
ducing random horizontal flipping, rotations of up to 10◦ in
either direction, as well as brightness/contrast adjustments
to mimic the extreme lighting conditions often found on the
Lunar surface.

4. Technical Approach and Experiments

4.1. Baseline Methods

We use single-task models as baselines for the seman-
tic segmentation and depth perception tasks to evaluate our
unified model against. On the semantic segmentation task,
our baselines are SegFormer [11], MaskFormer [2], and
UNet++ [15]. On the depth perception task, we utilize
Depth Anything v2 [13]. All of these models are fine-tuned
on LuSNAR; we discuss the fine-tuning recipes for each of
these models in section 4.4.

SegFormer is a Transformer-based model that performs
semantic segmentation via a hierarchical Transformer en-
coder with a lightweight MLP-based decoder. The en-
coder is used to extract multi-scale features, and the decoder
is used to fuse these features together and subsequently
project them into a depth map. Given an input RGB im-
age X ∈ ℜH×W×3, the encoder produces feature maps at 4



different scales

Fi ∈ ℜ
H

2i
×W

2i
×Ci ∀i ∈ {1, 2, 3, 4}

using self attention. The decoder first takes the features and
passes them through an MLP to unify the channel dimen-
sion; subsequently, these features are upsampled and con-
catenated together. The remaining two MLP layers, respec-
tively, fuse the concatenated features and predict the seg-
mentation map with a resolution of H

4 × W
4 × Ncls where

Ncls represents the number of semantic categories an object
could belong to [11].

The MaskFormer model reformulates the semantic seg-
mentation task as a mask prediction task. Here, the model
uses bipartite patching to align predictions with ground
truth and output a fixed set of mask-class pairs. Given an
input RGB image X ∈ ℜH×W×3, a pixel decoder produces
per-pixel embeddings E ∈ ℜH×W×d, and a transformer
decoder outputs N mask embeddings M ∈ RN×D. The
mask prediction step is performed via a dot product of the
mask embeddings and pixel embeddings mi = σ(MiE

T ),
and then classification is accomplished by applying a linear
layer on the per-segment embeddings followed by a Soft-
max classifier to obtain the probability predictions [2].

UNet++ is a Convolutional Neural Network following
an encoder-decoder architecture with nested skip pathways
that aim to bridge the semantic gap between encoder and
decoder feature maps. Compared to a vanilla U-Net, this
model has convolution layers on skip pathways (along with
incorporating dense skip connections on these pathways),
and uses deep supervision. Given an input RGB image X ∈
ℜH×W×3, the nested skip connections are computed via

xi,j =

{
H

(
xi−1,j

)
, j = 0

H
([[

xi,k
]j−1

k=0
, U(xi+1,j−1)

])
, j > 0

where H represents a convolution operation followed by
an activation function, U is an upsampling layer, and Xi,j

is the feature at the down-sampling encoder layer i, dense
block convolution layer j [15]. Additionally, Deep Supervi-
sion, where the loss is computed at multiple decoder depths,
enables better gradient flow and improved feature fusion by
allowing the model to balance accuracy versus speed.

Depth Anything v2 is based on the Vision Transformer
(ViT) architecture and is adapted for the monocular depth
estimation task. As it is pretrained on a large-scale depth
dataset, it is designed to be a general-purpose model for
a variety of depth perception scenarios. Given an input
RGB image X ∈ ℜH×W×3, the ViT backbone extracts fea-
tures at multiple scales, and then the DPT-based decoder
(which itself uses features from DINOv2) works by pre-
dicting a depth map D̂i from the ViT-extracted features Fi.
This architecture is paired with two loss functions: a scale-
and shift-invariant loss as well as a gradient matching loss,

which enables it to robustly estimate depth values from a
single image [13].

4.2. Unified Multi-Task Architecture

We propose a unified multi-task architecture for seman-
tic segmentation and depth perception tasks. We begin with
a frozen vision encoder from SAM-ViT-Huge, which serves
as a backbone feature extractor for both the segmentation
and depth estimation tasks. Then, for each task, we create
a task-specific prediction head. Both of these heads were
designed initially to each consist of a convolutional layer
with a 3× 3 filter, 128 channels, batch normalization, and a
ReLU activation function, along with a 1× 1 convolutional
layer that either maps to 5 class outputs (in the case of the
segmentation prediction head), or a single channel scalar-
valued output (in the case of the depth estimation predic-
tion head). Sequentially, we represent this architecture as
follows:

F = Φ(I)

where Φ is the SAM-ViT-Huge vision encoder and F ∈
ℜB×C×H′×W represents the extracted features;

S = Ψseg(F )

where Ψseg is the segmentation head, yielding logits for
each of C classes, and

D = Ψdepth(F )

where Ψdepth is the depth perception head which yields a
scalar-valued output.

This architecture has evolved over our experimentation
procedure. First, we unfreeze the last 4 blocks of the SAM-
ViT-Huge encoder as the images from LuSNAR might be
significantly different from the examples in the dataset that
SAM was trained on. While the lightweight prediction
heads worked well for the segmentation task (likely owing
to the SAM-based backbone), empirical results indicated
that such a design underperformed on the depth perception
task. As such, we draw inspiration from DPT-based mod-
els and create a new depth prediction head incorporating di-
lated convolutions for enlarging receptive fields without res-
olution loss as well as an attention mechanism (which em-
phasizes structurally salient features), both of which should
help the model capture global depth structure and fine-
grained edge and smoothness details [8]. To further en-
hance the performance on the depth prediction task, we in-
troduce a Knowledge Distillation (KD) process by using a
pre-trained DPT-Large model as a teacher model, while the
prediction head in our unified model serves as the student
model. KD was introduced to help the student model learn
richer representations even when direct ground-truth super-
vision via LuSNAR is sparse or noisy. We use structural
matching by aligning the gradient maps of the student and



teacher model outputs to better preserve edge contours and
environment topography. Furthermore, we also normalize
the teacher model’s output per sample to match the student
model’s distribution. Therefore, our student model should
be able to learn from annotated ground-truth depth maps in
LuSNAR, but also mimic structural qualities found in the
pre-trained teacher’s output.

Given a student model S and a pretrained teacher model
T , we wish to transfer structural knowledge from the
teacher model’s depth predictions DT ∈ ℜB×1×H×W to
the student model’s depth predictions DS . We apply per-
sample normalization to match the dynamic range and dis-
tribution of the student predictions as follows:

µT = mean(DT ), σT = std(DT )

µS = mean(DS), σS = std(DS)

D̃T =
DT − µT

σT + ϵ
σS + µS

where D̃T is the normalized teacher depth map and ϵ is a
small positive constant to help maintain numerical stability.

Figure 2 describes the overall unified model architecture
with DPT-based Knowledge Distillation on the depth pre-
diction head.

4.3. Multi-Task Objective

We propose training the unified model described in sec-
tion 4.2 on both segmentation and depth perception tasks
simultaneously using a multi-task loss function given by

Ltotal = λseg ∗ Lseg + λdepth ∗ Ldepth + λKD ∗ LKD

where Lseg is the cross-entropy loss for the segmentation
task, given by

Lseg = −
C∑

c=1

yc log(ŷc)

with C indicating the total number of classes, and Ldepth is
the L1 loss for the depth estimation task given by

Ldepth =
1

N

N∑
i=1

|di − d̂i|

Furthermore, to better capture structural detail such as ter-
rain edges, we define a gradient-based distillation loss as
follows:

Lgrad = ||Gx(DS)−Gx(D̃T )||1+ ||Gy(DS)−Gy(D̃T )||1

where Gx and Gy denote convolutions with horizontal and
vertical Sobel kernels (respectively). Furthermore, we also
use a pixel-wise L2 loss to align the overall depth structure:

Lpixel−wise = ||DS − D̃T ||22
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Figure 2. Unified Model Architecture with Knowledge Distilla-
tion. The unified model uses a SAM Vision Encoder as the back-
bone with specialized heads for segmentation and depth estimation
(student model). The frozen DPT teacher provides depth knowl-
edge distillation.

We combine the gradient loss term with the alignment loss
term to obtain

LKD = α ∗ Lgrad + (1− α) ∗ Lpixel−wise

where α ∈ [0, 1] is a weighting parameter for the KD loss.
We include λseg, λdepth, λKD as task weights that col-

lectively weigh the relative importance of each of these ob-
jectives in the final loss formulation. For the purpose of
our experiments, we set λseg = 1.0, λdepth = 5.0, and
λKD = 0.05. We upsample predictions to match ground-
truth dimensions using bilinear interpolation before com-
puting the losses to be robust to different output resolutions.

4.4. Training Strategy and Hyperparameter Tuning

On the processed LuSNAR dataset described in section
3, we fine-tune all of our baseline models using a similar
recipe consisting of 5 epochs, as well as the Adam Op-
timizer (PyTorch implementation) for all baseline models.
We also found that using AdamW with a standard weight
decay parameter of 0.01 led to more stable fine-tuning for
the Depth Anything v2 and MaskFormer models. For the
learning rate, we manually tuned within [1∗10−3, 5∗10−5].



We found optimal learning rates of 5∗10−5 for Depth Any-
thing v2, 1∗10−5 for MaskFormer, 5∗10−5 for SegFormer,
and 1∗10−4 for UNet++. We follow a similar training recipe
for the unified model, except the number of epochs was
increased to 10 from 5 because we trained two prediction
heads jointly and the segmentation prediction head was not
initialized from any pre-trained weights. We use the Adam
optimizer and find that a weight decay parameter of 1∗10−5

and a learning rate of 1 ∗ 10−4 were optimal for a smooth
and stable training process. In our experiments, given the
large image sizes and teacher model inference cost, we use
a small batch size of 4 to reduce memory load on our setup.

5. Experiments and Results

5.1. Experiment Design

All models were fine-tuned via the HuggingFace and Py-
Torch libraries; for all models except UNet++ described
above, we use the standard implementation of the model
as according to their respective papers and HuggingFace.
UNet++’s implementation is as according to its original pa-
per and the segmentation-models-pytorch library implemen-
tation. We then constructed a dataset pipeline for LuSNAR
as well as a training and evaluation pipeline for each of these
model implementations.

For the semantic segmentation task, we evaluate on the
Mean Intersection Over Union (mIOU) metric, which is the
overlap between segmented objects in the predicted seg-
mentation map versus the ground truth segmentation map
divided by the total area of the image covered by the union
of the two. For the depth estimation task, we use the
absolute relative error (ARE) and root-mean-square error
(RMSE) between pixel values of the ground truth depth map
versus the predicted depth map. We then compute the δ1,
δ2, and δ3 values, which are the percentage of pixels where
the ratio between the prediction and ground truth is less than
1.25, 1.252, and 1.253 (respectively).

We first fine-tuned all of the baseline models using the
training recipes outlined in section 4.4 and obtained base-
line results on standard metrics for the semantic segmenta-
tion and depth perception tasks, respectively. For the uni-
fied model, we begin with the two basic CNN-based pre-
diction heads as outlined in section 4.2. Each version of
this model was trained on the same recipe described in sec-
tion 4.4. This initial version of the model performed on par
with UNet++ on the segmentation task, but exhibited sig-
nificantly worse performance on the depth perception task,
with an absolute relative error twice that of Depth Anything
v2 and a δ1 value of only about 21%. Subsequently, we
added dilated convolutions, an attention block, and a skip
connection to the depth perception head, but this still did
not lead to significant performance gains on the depth per-
ception metrics. Finally, we unfroze the last 4 blocks of the

SAM encoder and introduced knowledge distillation to the
depth prediction head using a pre-trained DPT model. This
was able to improve depth perception performance signifi-
cantly while beating UNet++ performance slightly. All fine-
tuning and training experiments were conducted on a Linux
server with a single NVIDIA GeForce RTX 3090 contain-
ing 24 GB of memory managed by the author [7].

5.2. Results and Evaluation

In table 1, we report the overall results on the mIOU met-
ric for the semantic segmentation task of the unified model
against the segmentation baselines. In table 2, we report the
overall results on the absolute relative error, RMSE, and δ1,
δ2, δ3 metrics for the depth perception task of the unified
model against Depth Anything v2.

Table 1. Semantic Segmentation Performance Comparison

Model Mean IoU

UNet++ 0.7681
MaskFormer 0.8955
SegFormer 0.9686
Unified 0.7766

Table 2. Depth Estimation Performance Comparison

Model ARE RMSE δ1 δ2 δ3

DA v2 0.688 0.080 0.901 0.954 0.972
Unified 0.074 0.024 0.947 0.986 0.997

Subsequently, in figure 3 we display the segmentation
and depth maps generated by the unified model and com-
pare to the to the ground truth segmentation and depth maps
from LuSNAR. We also display depth maps generated by
the teacher model as well as the depth difference from the
Knowledge Distillation process.

We also compute loss curves for the unified model and
for each of the baselines, along with qualitative visualiza-
tions of segmentation and depth maps generated by the
baseline models. These results are included in the appendix
for the sake of readability of this paper.

5.3. Discussion

We observe that our unified multi-task model performs
competitively across both the segmentation and depth esti-
mation metrics. We achieve a mean IoU of 0.7766 on the
semantic segmentation task, and we also demonstrate strong
depth estimation metrics with an Absolute Relative Error of
0.074, an RMSE of 0.024, and values above 94% for δ1,
δ2, and δ3. These metrics outperform or match the perfor-
mance of existing general-purpose segmentation and depth
perception models on lunar surface environments, and thus



Figure 3. Ground Truth Segmentation Maps/Depth Maps and Unified Model-predicted Segmentation Maps and Depth Maps. (Top Row,
from left to right) Input RGB Image, Ground Truth Segmentation Map, Ground Truth Depth Map, Teacher Depth; (Bottom Row, from left
to right) Input RGB Image, Predicted Segmentation Map, Predicted Depth Map, Depth Difference.

validates our architectural design choices along with task-
specific optimizations for our unique scenario.

In our solution for the 2025 Lunar Autonomy Challenge,
we strongly preferred UNet++ for segmentation due to its
CNN-based architecture enabling significant reductions in
computational cost. Given the extremely constrained com-
pute environment we were in, having the most computa-
tionally efficient model was preferable to gaining a few ex-
tra points in efficiency. Our model outperforms UNet++
by a modest margin, and this is attributed to the powerful
SAM backbone which provides robust feature representa-
tions that, in the case of a unified model, can match and
exceed the performance of the complex CNN-based archi-
tecture from UNet++. In particular, we believe that SAM’s
ViT components, which are pretrained on massive segmen-
tation datasets, are useful for high-fidelity feature extrac-
tion within complex scene understanding tasks. Further-
more, jointly optimizing segmentation and depth estimation
in this regard provides some implicit regularization and fea-
ture sharing benefits; we believe that the depth estimation
branch of the model can provide some geometric under-
standing using the depth values that may help the segmenta-
tion prediction head inform some of its segmentation deci-
sions, such as distinguishing between semantically similar
but geometrically distinct regions. At the same time, our
model underperforms the two Transformer-based metrics;
MaskFormer achieved an mIOU of 0.8955 and SegFormer

achieved the best mIOU value of 0.9686 in our experiments.
We attribute this to the design of our segmentation percep-
tion head: given real-life compute requirements in our sce-
nario, we opted to choose a CNN-based architecture. While
this architecture was lightweight and simple to implement
by stacking it on top of the SAM feature extractor backbone,
MaskFormer and SegFormer both leverage Transformer-
based architectures end-to-end, enabling more sophisticated
attention mechanisms and global context modeling (along
with higher model capacity) that make them particularly
good at generalizing to the lunar terrain segmentation task
after fine tuning. In particular, MaskFormer uses the mask
classification paradigm with learnable queries, which might
excel at handle overlapping and hierarchical semantic re-
gions such as rocks sitting on top of lunar regolith. On
the other hand, SegFormer uses a hierarchical transformer
architecture, which helps it better capture multi-scale fea-
ture interactions. Our CNN prediction head is likely un-
able to achieve the same level of global context integration
and struggles with complex spatial relationships between
objects. Furthermore, the Transformer-based models bene-
fit from more sophisticated data augmentation and training
recipes tailored to their architecture, while we prioritize the
multi-task learning objective which may not have fully op-
timized segmentation performance as it focused more on
improving the Depth Estimation task performance.

On the Depth Estimation task, our model has achieved



better performance than Depth Anything v2 in terms of both
the error metrics and the δ1, δ2, δ3 metrics. Depth Any-
thing v2 is designed as a general purpose monocular depth
estimation model and is trained on lots of diverse imagery.
Even with the fine tuning introduced in our work, we find
that our unified model can perform better. We designed the
unified model specifically with lunar terrain characteristics
in mind, such as the unique lighting conditions and surface
textures across different types of objects. These results lead
us to believe that there exists a domain gap between the
terrestrial training data within Depth Anything v2 and the
surface conditions likely to be encountered by a robot oper-
ating on the lunar surface. This prevented Depth Anything
v2 from performing better on the lunar terrain depth esti-
mation task. In retrospect, we would have unfrozen more
layers of the Depth Anything v2 model; we opted not to do
so due to training hardware limitations. Our results suggest
that the features extracted from the SAM backbone, when
combined with knowledge distillation applied to the predic-
tion head, were beneficial to the unified model performing
well on the Depth Estimation task. Using a distilled predic-
tion head on this task allowed us to modify our architecture
with dilated convolutions (which resulted in expanded re-
ceptive fields) as well as refining our depth features using
attention mechanisms. The relationships between different
objects as determined by the SAM backbone likely presents
a good starting point for estimating depth based on where
the boundaries between these objects lie. One other obser-
vation is that the outputs of both our model and Depth Any-
thing v2 exhibit some blur in the predictions compared to
the ground truth data. This is likely due to limitations with
monocular depth: there exists a scale ambiguity where mul-
tiple depth configurations can produce the same image pro-
jection without a stereo image to verify against. The lunar
terrain environment likely suffers from this due to the lack
of color and object type variation across scenes. It seems
that both models are using image-specific features such as
the texture gradients to infer depth; this will not work as
well for lunar terrain scenes due to the relatively uniform
texture (in terms of color) on the lunar surface. As such,
the visual cues used by the model to estimate depth are not
robust enough, which leads to the slight blur as seen in the
depth predictions. Furthermore, we observe a pink region
at the bottom of the plotted student depth; after examin-
ing the values in this region of the image, we find that the
predicted values are very similar to the ground truth depth
(which does not affect the quality of the prediction during
evaluation). We attribute this artifact to a plotting error.

6. Conclusion
We demonstrate the viability of joint multi-task learning

for two challenging lunar perception tasks with a unified
perception model capable of performing semantic segmen-

tation and depth estimation on the lunar surface. Compared
against established baselines in both tasks, our SAM-based
architecture achieved competitive results with an mIOU of
0.7766 for segmentation and strong depth perception per-
formance with an ARE of 0.074 and an RMSE of 0.024.
While our model was able to outperform Depth Anything
v2 and UNet++, it still has potential for improvement in the
segmentation task as the two transformer-based segmenta-
tion baselines were able to achieve higher mIOU values.
SegFormer’s end-to-end hierarchical transformer architec-
ture, along with MaskFormer’s query-based mask classifi-
cation approach, enable them to handle long-range depen-
dencies, multi-scale features, and overlapping semantic re-
gions well; all of these exist within our lunar terrain en-
vironment. Our CNN-based prediction head, even when
augmented with features extracted from SAM, is still un-
able to match the performance of these Transformer-based
models; however, it was able to slightly edge out the perfor-
mance of an advanced CNN-based architecture (UNet++).
We attribute our strong performance on the depth estima-
tion task to our architecture, combining SAM-extracted fea-
tures, a transformer-based prediction head using the DPT
architecture, as well as knowledge distillation from a pre-
trained DPT model. This architectural design is critical to-
wards closing a domain gap unique to our task characterized
by a lack of color variation and harsh lighting conditions.
In our joint multi-task learning approach, we have devel-
oped a computationally efficient model that can be widely
deployed across autonomous robots operating in resource-
constrained scenarios on extraterrestrial surfaces. These
types of unified, multi-task perception models will become
compelling choices for navigation stacks running onboard
autonomous extraterrestrial surface exploration missions.

6.1. Future Work

Assuming we have more available compute, we will re-
place the CNN-based prediction head with a lightweight
transformer-based architecture; the transformer attention is
likely beneficial towards helping the model generalize bet-
ter to segmentation features and interactions between ob-
jects (as has been shown with the segmentation baselines).
Furthermore, given the lack of color variation on the lunar
surface, we note that the edges and interactions between ob-
jects are critical towards performing well on segmentation,
and we are looking into uncertainty estimation techniques
to identify and handle ambiguous regions. On the depth es-
timation front, we are looking at modifying our objective
function to handle sharp depth prediction, such as an L2-
based loss (which may be useful as a sparse solution is not
necessarily useful here) and adversarial training. Finally,
taking inspiration from data adaptation recipes from large
pre-trained models, we will introduce more domain-specific
data augmentation strategies designed for lunar terrain.
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8. Software Packages
All of the code for this research was written in Python

3.10.16. All software packages and their corresponding ver-
sion numbers used in this research are displayed in table 3.

Table 3. Python packages and versions used in this work.
Python Package Name Version Number
NumPy 1.26.4
Pandas 1.3.4
PyTorch 2.7.0
TorchVision 0.22.0
(HuggingFace) Transformers 4.51.3
(HuggingFace) Datasets 3.6.0
(HuggingFace) Evaluate 0.4.3
Matplotlib 3.10.1
scikit-learn 1.6.1
segmentation-models-pytorch 0.5.0
Pillow 11.2.1
Albumentations 2.0.6
Wandb 0.19.11
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Figure 4. Training and Validation Loss Curves (per epoch) for baseline models and the unified model. (Top Left) UNet++; (Top Right)
MaskFormer; (Center Left) SegFormer; (Center Right) Depth Anything v2; (Bottom) Unified Model.



Figure 5. A sample of Depth Anything v2’s Predictions on the Validation Set. (Left) Ground Truth RGB Image; (Center) Ground Truth
Depth Map; (Right) Predicted Depth Map.

Figure 6. A sample of UNet++’s Predictions on the Validation Set. (Left) Ground Truth RGB Image; (Center) Ground Truth Segmentation
Map; (Right) Predicted Segmentation Map.

Figure 7. A sample of MaskFormer’s Predictions on the Validation Set. (Left) Ground Truth RGB Image; (Center) Ground Truth Segmen-
tation Map; (Right) Predicted Segmentation Map.



Figure 8. A sample of SegFormer’s Predictions on the Validation Set. (Left) Ground Truth Segmentation Map; (Right) Predicted Segmen-
tation Map.


